Round-Robin Database
Storage Engine (RRD)

Oli Sennhauser (© GNU FDL)

Rebenweg 6
CH - 8610 Uster
Switzerland
oli.sennhauser@bluewin.ch

Introduction

In a round-robin database (RRD) usually time-series data
like network bandwidth, temperatures, CPU load etc. is
stored. The data is stored in the way that system storage
footprint remains constant over time. This avoids resource
expensive purge jobs and reduces complexity:

MySQL does NOT yet provide this kind of storage
engine. Although some people were thinking about and

some prototypes exists.

Nevertheless in this white paper it is shown how you can
build your own RRD tables.

Implementation

Let's assume this is your table which you want to convert

into a RRD table:

CREATE TABLE statistic (

attribute_key INT UNSIGNED
, start_utime INT UNSIGNED
, end utime INT UNSIGNED
, logging_interval INT UNSIGNED
, value BIGINT UNSIGNED

, KEY start_time (start_utime)

NOT NULL DEFAULT
NOT NULL DEFAULT

DEFAULT
NOT NULL DEFAULT
NOT NULL DEFAULT

, PRIMARY KEY (attribute_key, start_utime)

0"
0"

NULL
0"
0"

What you have to do now is adding a rrd_key which is
used to simulate the RRD behavior. You should also
consider to chose the FIXED MySQL row format to avoid

holes, increase speed and enable concurrent insert (in
MyISAM). Let us assume we want to store 25 mio rows

in this table:




CREATE TABLE statistic_rrd (

rrd_key INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY
, attribute_ key INT UNSIGNED NOT NULL DEFAULT 'O’
, start_utime INT UNSIGNED NOT NULL DEFAULT 'O’
, end_utime INT UNSIGNED DEFAULT NULL
, logging_ interval INT UNSIGNED NOT NULL DEFAULT 'O’
, value BIGINT UNSIGNED NOT NULL DEFAULT 'O’

, UNIQUE KEY (attribute_key, start_utime)
, KEY start_time (start_utime)

) ROW_FORMAT = FIXED

, MAX ROWS = 25000000

14

The you have to add a table where your rrd_key is stored and initialize the key:

CREATE TABLE statistic_rrd key (
rrd_key BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY

INSERT INTO statistic_rrd key VALUES (0);

RRD logic every INSERT. Do not forget to also set the number of

To simulate the RRD behavior you need a trigger on rows here:

DROP TRIGGER IF EXISTS statistic_rrd ins;
DELIMITER $$

CREATE TRIGGER statistic_rrd_ins
BEFORE INSERT ON statistic_rrd
FOR EACH ROW

BEGIN

SET @rrd_key = O;
SET @rows = 25000000;

—-— PK is NULL
IF NEW.rrd_key = 0 THEN

SELECT rrd_key + 1
FROM statistic_rrd key
INTO Qrrd_key;

SET NEW.rrd_key = Q@Qrrd_key;
END IF;

IF (NEW.rrd key % @rows) THEN
SET NEW.rrd_key = NEW.rrd key % @rows;




ELSE
SET NEW.rrd_key = Q@Qrows;
END IF;

UPDATE statistic_rrd key SET rrd key = NEW.rrd key;

END;

$$

DELIMITER ;
Testing REPLACE and adapt all your UPDATE and DELETE
Now we have to change all your INSERT statements into statements to the new table structure and it should work

as usual:

REPLACE INTO statistic_rrd

(attribute_key, start_utime, end _utime, logging_interval, wvalue)
VALUES

(ROUND (RAND () *100) , UNIX TIMESTAMP (NOW()), NULL, 100, 123456789)

SELECT * FROM statistic_rrd;

SELECT * FROM statistic_rrd_ key;

Some performance metrics
With the following statement the table was filled:

REPLACE INTO statistic_rrd

(attribute_key, start_utime, end utime, logging_interval, wvalue)
VALUES

(ROUND (RAND () *100000) , UNIX TIMESTAMP (NOW()), NULL, 100, 123456789)

The a file was created which contains 53248 rows. This A average insertion rate of around 600 INSERT/s was
file was running against the database. It results in around achieved (on a 1350 Mhz AMD Athlon with 1 CPU and 1
50 to 53 thousand rows inserted. GB RAM,; IDE disk 7200 rpm).



	Some performance metrics

