
Stealthy migrating MySQL tables and MySQL data access
interfaces using enlarged updateable VIEW functionality
by Kris Köhntopp and Oli Sennhauser, MySQL AB.

Applications occasionally require redesign. However, redesigning an application cannot be done in
one step because the application is distributed or several versions of applications must be supported.

MySQL 5.0 provides the necessary means to stealthy migrate your data.

In a short overview let's look at what we plan to do:

Original state: We have a typical application accessing the data via SELECT and DML (INSERT,
REPLACE, UPDATE, DELETE) commands. Because the table structure has to change in the near
future we have to hide this against the application.

Step 1, create interfaces: To hide the table structure we cover it with a layer of VIEW's and Stored
Procedures (SP). The Application can still access the data via the original paths. New applications
can access the new interfaces.

Step 2, clean-up of application: When the interfaces are properly defined and implemented, the
application can be migrated step by step to the new interfaces.

Step 3, Change table structure: When all the tables are covered by the new interfaces, the table
structure can be changed and interface versions can be upgraded to the new table structure in one
step.

Step 4, Add new interface versions: From now on, new interface versions can be added to provide
new features, table structures can be changed, and support for older application versions can be
better guaranteed.

orginal state

application(s)

table(s)

S
DML

step 1:
create intefaces

application(s)

table(s) SP

view

DML
S

step 2:
clean-up appl.

application(s)

table(s) SP

view

DML
S

step 3:
change tables

application(s)

SP

view

DML
S

view

step 4:
add new if

application(s)

SP
v1

view v1

DML
S

SP
v2

Step by step

Let's first simulate the original state:

CREATE TABLE company_employee
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY
 , company VARCHAR(128) NOT NULL
 , employee VARCHAR(128) NOT NULL
)
;

INSERT INTO company_employee
VALUES (1, 'MySQL', 'Hans Meier')
 , (2, 'MySQL', 'Hugo Huber')
 , (3, 'Tante Emma Laden', 'Hanne Hitz')
 , (4, 'Gegenueber Shop', 'Fritz Froehlich')
;

Our application consists of the following operations:

SELECT *
 FROM company_employee
;

INSERT INTO company_employee
VALUES (NULL, 'Linux', 'Anton Albern')
;

UPDATE company_employee
 SET employee = 'Berta Bach'
 WHERE id = 5
;

DELETE
 FROM company_employee
 WHERE id = 5
;

Everything is fine now. We can access our data and we can modify it. But, ... hmm, ok the data
model behind this example is not that perfect. We sometimes read about normalization and 3rd

normal form. So the goal is to stealthy migrate this table in 3rd normal form.

Create the interfaces

To hide this change, we have to first create some interfaces:

CREATE VIEW ce_select_if_v1 AS
SELECT id, company, employee
 FROM company_employee
;

DELIMITER //

CREATE PROCEDURE ce_insert_if_v1
(
 IN company_name VARCHAR(128)
 , IN employee_name VARCHAR(128)
)
BEGIN

 INSERT INTO company_employee
 VALUES (NULL, company_name, employee_name)
 ;
END;
//

CREATE PROCEDURE ce_update_if_v1
(
 IN company_id INT
 , IN employee_name VARCHAR(128)
)
BEGIN

 UPDATE company_employee
 SET employee = employee_name
 WHERE id = company_id
 ;
END;
//

CREATE PROCEDURE ce_delete_if_v1
(
 IN company_id INT
)
BEGIN

 DELETE
 FROM company_employee
 WHERE id = company_id
 ;
END;
//

DELIMITER ;

Now the old operations, as well as the following new ones should still work:

SELECT *
 FROM ce_select_if_v1
;

CALL ce_insert_if_v1('Linux', 'Anton Albern');

CALL ce_update_if_v1(6, 'Berta Bach');

CALL ce_delete_if_v1(6);

Clean-up application

Clean-up of the application code cannot be shown here. There are several ways to ensure that the
data is being accessed solely using the provided interfaces:

• You can revoke the privileges for a certain user to directly access the data and grant these
privileges only to the stored procedures or

• You can create some triggers on these tables which are logging some informations about the
user, time, etc. or

• You can parse the general query log for suspicious queries or

• You can rename the underlying tables and the queries will fail and the client will get an error
message.

Change table

Now the table can be changed:

CREATE TABLE company
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY
 , company_name VARCHAR(128) NOT NULL
)
;

CREATE TABLE employee
(
 id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY
 , first_name VARCHAR(128) NOT NULL
 , last_name VARCHAR(128) NOT NULL
 , company_id INT NOT NULL
)
;

INSERT INTO company
SELECT id, company
 FROM company_employee
;

Not perfect but for demo it is enough.
INSERT INTO employee
 SELECT NULL, SUBSTRING(employee, 1, locate(' ', employee)-1)
 , SUBSTRING(employee, locate(' ', employee)+1), id
 FROM company_employee
;

And the interfaces have to be adapted too:

RENAME TABLE ce_select_if_v1 TO ce_selct_if_v1_old;

CREATE VIEW ce_select_if_v1 AS
SELECT company.id, company_name AS 'company'
 , CONCAT(first_name, ' ', last_name) AS 'employee'
 FROM company INNER JOIN employee ON company.id = employee.company_id
;

DELIMITER //

DROP PROCEDURE ce_insert_if_v1 //

CREATE PROCEDURE ce_insert_if_v1
(
 IN company_name VARCHAR(128)
 , IN employee_name VARCHAR(128)
)
BEGIN

 DECLARE id INT;

 INSERT INTO company
 VALUES (NULL, company_name)
 ;

 SET id = LAST_INSERT_ID();

 INSERT INTO employee
 VALUES (NULL, SUBSTRING(employee_name, 1, locate(' ', employee_name)-1)
 , SUBSTRING(employee_name, locate(' ', employee_name)+1), id)
 ;
END;
//

DROP PROCEDURE ce_update_if_v1 //

CREATE PROCEDURE ce_update_if_v1
(
 IN id INT
 , IN employee_name VARCHAR(128)
)
BEGIN

 UPDATE employee
 SET first_name = SUBSTRING(employee_name, 1, locate(' ', employee_name)-
1)
 , last_name = SUBSTRING(employee_name, locate(' ', employee_name)+1)
 WHERE company_id = id
 ;
END;
//

DROP PROCEDURE ce_delete_if_v1 //

CREATE PROCEDURE ce_delete_if_v1
(
 IN id INT
)
BEGIN

 DELETE
 FROM employee
 WHERE company_id = id

 ;
END;
//

DELIMITER ;

Now the operations should still work using the new interfaces and table structures:

SELECT *
 FROM ce_select_if_v1
;

CALL ce_insert_if_v1('Linux', 'Anton Albern');

CALL ce_update_if_v1(5, 'Berta Bach');

CALL ce_delete_if_v1(5);

New interfaces

Now, new interfaces can be built for future development.

Discussion

During the migration there was no cleanup in company table. So the table still contains redundant
information which needs to be cleaned-up:

mysql> select * from company;
+----+------------------+
| id | company_name |
+----+------------------+
| 1 | MySQL |
| 2 | MySQL |
...
+----+------------------+

The interfaces do not yet provide full functionality to properly maintain the data. It needs to be
defined if record #5 should have been deleted or not:

mysql> select * from company;
+----+------------------+
| id | company_name |
+----+------------------+
| 1 | MySQL |
...
| 5 | Linux |
+----+------------------+

Updateable views

MySQL 5.0 provides updateable views but with some restrictions. With the shown stored procedure
wrappers we can reduce the number of restrictions.

On this VIEW we can update. It is an updateable view:

CREATE VIEW ce_select_if_v1 AS
SELECT id, company, employee
 FROM company_employee
;

But on a VIEW with an underlying JOIN you will receive the following errors:

INSERT INTO ce_select_if_v1 (id, company, employee)
VALUES (1, 'MySQL', 'Hans Meier')
;

ERROR 1393 (HY000): Can not modify more than one base table through a join
view 'test.ce_select_if_v1 '

UPDATE ce_select_if_v1
 SET employee = 'Hilde Fischer'
 WHERE id = 3
;

ERROR 1348 (HY000): Column 'employee' is not updatable

DELETE
 FROM ce_select_if_v1
 WHERE id = 1
;

ERROR 1395 (HY000): Can not delete from join view 'test.ce_select_if_v1 '

This is one of the reasons why stored procedures were used for this example. The solution using
Stored Procedures provides much more flexibility for implementing logic about how the interface
should behave.

	Stealthy migrating MySQL tables and MySQL data access interfaces using enlarged updateable VIEW functionality
	Step by step
	Create the interfaces
	Clean-up application
	Change table
	New interfaces
	Discussion
	Updateable views

